Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Comput Biol ; 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2246666

ABSTRACT

An accurate understanding of the evolutionary history of rapidly-evolving viruses like SARS-CoV-2, responsible for the COVID-19 pandemic, is crucial to tracking and preventing the spread of emerging pathogens. However, viruses undergo frequent recombination, which makes it difficult to trace their evolutionary history using traditional phylogenetic methods. In this study, we present a phylogenetic workflow, virDTL, for analyzing viral evolution in the presence of recombination. Our approach leverages reconciliation methods developed for inferring horizontal gene transfer in prokaryotes and, compared to existing tools, is uniquely able to identify ancestral recombinations while accounting for several sources of inference uncertainty, including in the construction of a strain tree, estimation and rooting of gene family trees, and reconciliation itself. We apply this workflow to the Sarbecovirus subgenus and demonstrate how a principled analysis of predicted recombination gives insight into the evolution of SARS-CoV-2. In addition to providing confirming evidence for the horseshoe bat as its zoonotic origin, we identify several ancestral recombination events that merit further study.

2.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721790

ABSTRACT

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 Vaccines/immunology , Complementarity Determining Regions , Deep Learning , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests/methods , Protein Domains , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1369457

ABSTRACT

SARS-CoV-2 infects epithelial cells of the human gastrointestinal (GI) tract and causes related symptoms. HIV infection impairs gut homeostasis and is associated with an increased risk of COVID-19 fatality. To investigate the potential link between these observations, we analyzed single-cell transcriptional profiles and SARS-CoV-2 entry receptor expression across lymphoid and mucosal human tissue from chronically HIV-infected individuals and uninfected controls. Absorptive gut enterocytes displayed the highest coexpression of SARS-CoV-2 receptors ACE2, TMPRSS2, and TMPRSS4, of which ACE2 expression was associated with canonical interferon response and antiviral genes. Chronic treated HIV infection was associated with a clear antiviral response in gut enterocytes and, unexpectedly, with a substantial reduction of ACE2 and TMPRSS2 target cells. Gut tissue from SARS-CoV-2-infected individuals, however, showed abundant SARS-CoV-2 nucleocapsid protein in both the large and small intestine, including an HIV-coinfected individual. Thus, upregulation of antiviral response genes and downregulation of ACE2 and TMPRSS2 in the GI tract of HIV-infected individuals does not prevent SARS-CoV-2 infection in this compartment. The impact of these HIV-associated intestinal mucosal changes on SARS-CoV-2 infection dynamics, disease severity, and vaccine responses remains unclear and requires further investigation.


Subject(s)
Angiotensin-Converting Enzyme 2/analysis , HIV Infections/virology , Intestinal Mucosa/virology , SARS-CoV-2/isolation & purification , Serine Endopeptidases/analysis , Adult , Chronic Disease , Female , Humans , Intestinal Mucosa/chemistry , Male , Middle Aged
4.
Science ; 371(6526): 284-288, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-1033401

ABSTRACT

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence's grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


Subject(s)
Acquired Immunodeficiency Syndrome/immunology , COVID-19/immunology , HIV-1/genetics , Influenza A virus/genetics , Influenza, Human/immunology , SARS-CoV-2/genetics , Acquired Immunodeficiency Syndrome/virology , Binding Sites , COVID-19/virology , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza, Human/virology , Mutation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL